Stabilizing Dynamic Control Design for Hybrid Systems: A Hybrid Control Lyapunov Function Approach
نویسندگان
چکیده
This paper proposes a dynamic controller structure and a systematic design procedure for stabilizing discrete-time hybrid systems. The proposed approach is based on the concept of control Lyapunov functions (CLFs), which, when available, can be used to design a stabilizing state-feedback control law. In general, the construction of a CLF for hybrid dynamical systems involving both continuous and discrete states is extremely complicated, especially in the presence of non-trivial discrete dynamics. Therefore, we introduce the novel concept of a hybrid control Lyapunov function, which allows the compositional design of a discrete and a continuous part of the CLF, and we formally prove that the existence of a hybrid CLF guarantees the existence of a classical CLF. A constructive procedure is provided to synthesize a hybrid CLF, by expanding the dynamics of the hybrid system with a specific controller dynamics. We show that this synthesis procedure leads to a dynamic controller that can be implemented by a receding horizon control strategy, and that the associated optimization problem is numerically tractable for a fairly general class of hybrid systems, useful in real world applications. Compared to classical hybrid receding horizon control algorithms, the proposed approach typically requires a shorter prediction horizon to guarantee asymptotic stability of the closed-loop system, which yields a reduction of the computational burden, as illustrated through two examples. Stefano Di Cairano is with Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts. E-mail: [email protected]. Maurice Heemels and Mircea Lazar are with the Dept. of Mechanical Eng. (W.P.M.H. Heemels) and the Dept. of Electrical Eng. (M. Lazar), Eindhoven Univ. of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mails: [email protected], [email protected]. Alberto Bemporad is with the IMT Institute for Advanced Studies, Lucca, Italy, E-mail: [email protected]. Maurice Heemels, Mircea Lazar, and Alberto Bemporad were partially supported by the European Commission under project FP7-INFSO-ICT-248858 ‘MOBY-DIC Model-based synthesis of digital electronic circuits for embedded control’. Preliminary results related to this research were presented in [1], [2]. This paper provides new results on the stability properties of the proposed control strategy, full detailed proofs, a novel and detailed procedure for the synthesis of the control law, and an example of practical interest demonstrating the proposed approach. January 15, 2014 DRAFT
منابع مشابه
Hybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملA Hybrid Control Method for Stable Operation of Active Power Filters in Three-Phase Four-Wire Networks
The main goal of this study is the use of Lyapunov’s stability theory to a three-phase four-wire shunt active power filter (SAPF), since this method has been applied effectively to other areas of converter. The dynamic model of the SAPF is first established, after that, a combination of fuzzy tracking control and Lyapunov function is suggested in order to impose a desired transient waveform on ...
متن کاملADAPTIVE BACKSTEPPING CONTROL OF UNCERTAIN FRACTIONAL ORDER SYSTEMS BY FUZZY APPROXIMATION APPROACH
In this paper, a novel problem of observer-based adaptive fuzzy fractional control for fractional order dynamic systems with commensurate orders is investigated; the control scheme is constructed by using the backstepping and adaptive technique. Dynamic surface control method is used to avoid the problem of “explosion of complexity” which is caused by backstepping design process. Fuzzy logic sy...
متن کاملOptimal Robust Control for Bipedal Robots through Control Lyapunov Function based Quadratic Programs
This paper builds off of recent work on rapidly exponentially stabilizing control Lyapunov functions (RES-CLF) and control Lyapunov function based quadratic programs (CLFQP) for underactuated hybrid systems. The primary contribution of this paper is developing a robust control technique for underactuated hybrid systems with application to bipedal walking, that is able to track desired trajector...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014